Northern Pathway	Summary	
Shared Path	Waitemata-Akoranga shared path (a standa path adjacent northern motorway)	alone bridge (2 km over harbour) plus 2.8 km ground level
	Units	Assumptions and notes
General Project Information		
Construction Start Date	2023	
Forecast completion date	2026	Opening year
Monitoring Period	years	\sim
Do Intervention		A SY
Road Length	4.8 km	Length of path for which the construction emissions are estimated
Number of lanes		Pood longth multiplied by the number of lanes
Infrastructure Type		Solution of the solution of th
Emissions Breakdown		
Construction	49,696 tCO2e	Total estimated construction emissions. See Construction worksheet.
	1.5	
Construction Emissions per Kilometre	10,353 tCO2e/km	
Construction Emissions per Lane Kilometre	10,353 tCO2e/lane km	
Enabled emissions	2028-2038	
Cumulative calculated enabled emissions	-5786 tCO2e	Cumulative avoided emissions from implemening the intervention (see e
	P- N	
Project Information	$\langle \mathbf{v}, \mathbf{v} \rangle$	

Do Minimum in this project is zero as there is no shared path at present.

Do Intervention = new shared path, Waitemata-Akoranga, for cyclists and pedestrian use. The projected number of users is the increase in users expected as a result of the intervention.

TE MANATO WAY AND THE REAL PROPERTY OF TRANSPORT

Northern Pathway

Enabled Emissions

Shared Path

Note: Do Minimum in this project is zero as there is no shared path.

			Units	Assumptions and notes
Do Intervention	Cyclist/pedestrian trips	using shared path (the pro	ojected number of trips	is the increase expected as a result of the pathway).
Road Length	4.8		km	
Number of lanes	1		#	
Lane kilometres	4.8		km	
Inputs for VEPM				
Forecast Year	2028	2038		()
Speed Car	30	<u> </u>		Average speed over distance of replaced trip. Source: Waka Kotahi (Auckland Systems Management
Outputs from VEPM				Team), based on June 2021 data. See clip.
	2028	2038		
CO2 at 30 km	233	180 g/km		Source: VEPM v6.2
VKT Inputs				SVA
Length of average replaced trip	10		km	Estimate, based on Birkenhead or Takapuna to Akl CBD.
	2028	2038		
Daily number of trips (cycling or walking)	3100	4750		Source: Flow Transportation data provided via email, 21
Car diversion rate	0.33	0.24		July 2021; see clip
	2028	2038		Note: User numbers exclude recreational/tourist trips.
Vehicle journeys	2020	2030		Car in unave replaced by cycling or walking trips (assuming 5 days per y
Public transport	-2,070,030	0 VKT pa		cal journeys replaced by cycling or waiking trips (assuming 5 days per v
Cycling or walking	8.091.000	12.397.500 VKT pa		New cycling and walking trips
	0,001,000	12,001,000 111 04		
Calculated Emissions			A'N	
			G'.LY	
	2028	2038	アシス	
From vehicle journeys	-621	-536 tCO2e		Avoided emissions based on estimated reduction in VKT pa
From public transport	0	010020	<i>N</i> .	
	-621	-536 (0020		Avoided emissions based on estimated reduction in VKT na
	-021	-300 10020	\mathbf{S}	
Cumulative calculated Emissions	2028-2038			
From vehicle journeys	-5786		tCO2e	
From public transport	0		tCO2e	
From cycling and walking	0		tCO2e	
Total	-5786	N	tCO2e	Cumulative avoided emissions based on estimated reduction in VKT.
Intervention Total Enabled Emissions	-5786	N.	tCO2e	Total change in enabled emissions
	-5700	N.	10020	I otal change in chapled chilosions
	· · · · · · · · · · · · · · · · · · ·			

References

VEHICLE EMISSIONS PREDICTION MODEL

https://www.nzta.govt.nz/roads-and-rail/highways-information-portal/technical-disciplines/air-quality-climate/planning-and-assessment/vehicle-emissions-prediction-model/

VEPM 6.2

The Vehicle Emissions Prediction Model (VEPM) has been developed by Waka Kotahi NZ Transport Agency and Auckland Council to predict emissions from vehicles in the New Zealand fleet under typical road, traffic and operating conditions. The model provides estimates that are suitable for air quality assessments and regional emissions inventories.

Current version of the model [ZIP, 22 MB]

Changes to the previous version VEPM 6.1 released in 2020 include:

 Updating the fleet profile based on updated vehicle kilometres travelled (VKT) data from the Vehicle Fleet Emission Model (VFEM3) provided by Ministry of Transport

Since its release in 2008, VEPM has been successfully used in Auckland and around New Zealand to estimate vehicle emissions in air quality assessments for road projects. An important feature of the model is the ability estimate changes to vehicle emissions in future years (out to 2050).

VEPM is a password protected Excel spreadsheet which is publicly available upon request from Waka Kotahi. A summary of the previous and current versions of VEPM are provided below.

- Revising the assumed date of introduction of Euro 6/VI standards in VEPM
- Improving the assumptions in VEPM to split heavy commercial vehicle VKT between rigid and articulated truck categories
- Providing methane (CH4) and nitrous oxide (N2O) emission factors and calculation of carbon dioxide equivalent (CO2-e) emission factors
- Incorporating updated emission factors from the latest version of COPERT (the EU standard vehicle emissions calculator)
- Updating degradation factors for light duty vehicle carbon monoxide (CO) and nitrogen

re(d) and hope

Clip from ASM, via email 28 July 2021:

In the table below, we have provided the 4 harmonic speeds for these routes:

Route and Time	Harmonic Average Speed (km/h)
Esmonde/Lake Rd intersection to <u>Skytower</u> AM (0600- 0900)	21.2
Skytower to Esmonde/Lake Rd intersection PM (1500- 1900)	31.8
Northcote College to Skytower AM (0600-0900)	26.3
Skytower to Northcote College PM (1500-1900)	28.1

The routes used are shown in the images below, exiting and entering the motorway on Fanshawe St ramps.

We have used data from weekdays in June 2021 to get these averages.

Certain segments along the arterial roads were **below 5km/h**, while the average on the motorway section was approximately 60-70km/h. This resulted in the total route averages presented in the table above.

Based on expected utility users - moving to cycles from either cars or PT 2028: 31,109 cycle km; trip distance 10 km; therefore no of trips = 3100 trips*; for this

calculation, choose peak diversion rate 0.33 (80% of trips expected to occur at peak times

2038: 49,815 cycle km; trip distance 10.5 km; therefore no of trips = 4750 trips*; for this calculation, choose peak diversion rate 0.24

* Note that a trip is one way. For CIPA analysis, set vehicle distance to 10 km.

UPDATED USER DATA FROM FLOW TRANSPORTATION, 21 JULY 2021

Note that diversion rate is low, given high existing usage of PT

Additional data supplied by Michael Jongeneel, email 21 July

or your emissions calculations, figure on:

- 7,451 fewer car-km per day in 2028 (31,109 new cycle km, diversion rates of 0.33 in the peak, 0.17 at other times)
 8,417 fewer car-km per day in 2038 (49,815 new cycle km, diversion rates of 0.24 in the peak, 0.12 at other times)

FEMAMATI WAY MANY THE REAL PROPERTY OF TRANSPORT

Northern Pathway Construction emissions Expected construction 2023-2026 Shared Path

	Units	Emissions Factor Unit	Sources and notes
Do Intervention			
Material Quantities Estimate			
Construction Fuel Use Diesel	L	0.0027_tCO2e/L	(No data on fuel use available) MfE 2020
Construction Materials Concrete Steel	91,091 12,997 tonnes	0.11 tCO2e/tonne 2.85 tCO2e/tonne	AECOM derived factor (See assumptions below) MfE 2020
Road Surface Crushed rock or recycled material Gravel Bitumen	tonnes tonnes tonnes	0.0032 tCO2e/tonne 0.0182 tCO2e/tonne 0.3966 tCO2e/tonne	IS Calculator NZ v2.0 IS Calculator NZ v2.0 IS Calculator NZ v2.0
Asphalt	48600 tonnes	0.0542 tCO2e/tonne	IS Calculator NZ v2.0
Project Breakdown Total	49,696 tonnes of CO2e		2
Calculated Emissions			
Best estimate of calculated emissions	49,696 tonnes of CO2e		

Assumptions

Assumptions Based on previous research for Waka Kotahi, only emissions from the largest emission sources from construction of infrastructure projects hav been estimated (concrete, steel, aggregates, asphalt, and on-site fuel use). Emissions for construction have been calculated from data provided by Waka Kotahi for this project. When possible assumptions have been m de in a consisten manner to ensure

comparability between projects. Refer to construction schedule worksheet for indicative schedule of quantities of concrete, steel, asphalt. For this project note that no concept plans were a ailable. Estimates are

Indicative based on dimensional data provided. Materials and works related to bridge abutments have been included where relevant. The following were not included in the estimate: fuel used in quarrying activity; emissions from the transportation of construction materials to/from site; emissions arising from machinery

<text>

	Northern Pathway	Constr	uction Sc	hedule											
Source:	Concrete, steel and aspha t qua t ti s derived from ind	cative br	dge dimensi	ons provi	ded by WK	. Grade	path estimate derived	using	Britomart						
	No concept design plans were a all be at time of cach	ulation													
D6	RR DGES / STRIL TURES			Con rete		1 (m3	Steel	br -	A nhalt	Lorm	Annrenates	Lorm	3 Fuel	L rko	
				Mar of L		Unit	My d I	2 2	Mar of L	Links	Mar of L	oit	Marad I	a la comp	
						Come.			Print, II I	Contra 1	interes of the		Permanent i		Alow 50 kg/m3 frcn rete nd 5% by
	Based n dim n ions														olume o teel w ight 7,900 kg/m3 (450 mm thi k de k)
611	H bour to po		9600	1	25 110 00		2 067 29								A low 20% fact r
61.	FO or butm at			1	376 50		5 951 7 1								
61.	news nd pa	m	182	1	245 n		3.8 1 7								
61.4	EO for bu m nt				367.54	t	58.7 t								
61.5	Staff of Ov. bridge	m2	1254		169 90		67.48								
61.6	EO for bu m nt		2002	-	53 5		12 1								
61.7	Tuff Crat r ridge	m2	2002	-	70.70	t	4 7.0 t								
6 8	FIS of his mon		1.20	-	4 15 4 15		20 52 7								
61.10	For an an at		1.20	1	2 672 00	1	422.2								
6111	roug to the sides		2398	1	2 327 20	:	511.40								
	GRADE PATHWAY														
	/Δccumes imilar desi n to Rrit mart v lewa)														
	50mm thi k GA 65	m3	0800						16200						like ni h dim k
	50mm hik∆ 0	m	18000						7000						lice ni h dirn k
	Ta k natia er	m2 m2	72000						10.80						
	 mm mi k hon k 	1154	72000	1					4470						
-	Suferu P. co. c	m	8000	1	7 220 00										E une R mier
	K ht hoth ides	m	16000	1	1 300 00		25.41								
				1											
				1	15.25		478 1								http://www.hvords.o.n./wp.c.nt.nt/wplo.d./ 4.1.H. pac.M.nhole-System.pdf
1	recase c n rece 1200 mm di met r with 1 ss 0 kN cast iron	no	8	1											
	rame not corrover to in rt of pth n t e c eding 1.5 m														
	S nd rd nreat in rate e nit (575 450 00)	10	8		656		0.49 1								http://www.hwadc.o.n./www.rt.ptf.inlo.d./ 51.H.adc.Capit.linitc.lat.T.n.anda.k.Fetr.ndf
				1											
L	St rmwater 30 mm i metre P pe	m	8000	1	480.00										
L				1											
L															-

TE MANA