Otaki to North of Levin	Summary		
	Expected construction 2025-2029		
Road/Shared Path	New 24 km four lane road wi h shared path		
		Units	Assumptions and notes
Do Minimum	Existing SH1/SH57		
Road Length	18	km	Length of existing road. (SH1 only).
lumber of lanes ane kilometres	2 36	km	Total number of lanes in each direction, including shared pathways Road length multiplied by the number of lanes
Ifrastructure Type	State Highway		
Emissions			A.
Construction	0	tCO2e	Total do minimum construction emissions.
Cumulative Enabled	890,811 2029-2048	tCO2e	Cumulative enabled 'Do Minimum' emissions over the period (see worksheets)
		10020	
Do Intervention	New Expressway		
			Length of road of new road (for which the construction emissions are
Road Length	24	km	estimated)
Number of vehicle lanes	4		Total number of vehicle lanes in each direction Shared pathway
Number of shared paths .ane kilometres	120	km	Road length multiplied by the number of lanes
nfrastructure Type	State Highway with Shared Path	NIII	
Emissions Breakdown			
			Estimated construction based on the data available (see
Construction	238,690	tCO2e	worksheets)
Cumulative Enabled	935.349 2029-2048	tCO2e	Cumulative enabled 'Do Intervention' emissions over the period (see
	333,343 2029-2046	10028	weirslice(s)
Emissions Summary			
Emissions Summary			
Construction Construction Emissions per Kilometre	238,690 9 945	tCO2e CO2e/km	Estimated construction emissions (see worksheets for assumptions)
Construction Emissions per Lane Kilometre	1 989	tCO2e/lane km	1
Enabled			
Enabled	2029-2038 2039-2048	Total	
Do minimum vehicle emissions		90,811 tCO2e	Estimated enabled emissions
Do intervention vehicle emissions	494,083 441,266	85,349 tCO2e	
			Enabled emissions increase as a result of project for 2029-2038 period; the data for 2039-2048 shows effect of improvements in fleet
Cumulative change in vehicle journey emissio	ons 25,485 19,054	44,539 tCO2e	emissions.
Project Information	pdelling of enabled emissions, traffic on both of these roads is c		

Do minimum = existing SH1 and SH57. For modelling of enabled emissions, traffic on both of these roads is considered. Do Intervention = Do minimum + New 4 lane highway from north of Levin to Manakau (joining PP20 Expressway) with separated shared path. Construction emissions estimated for major items (earthworks, concrete, steel, aggrega e, asphalt) based on schedule provided by project team. Refer to worksheets for further details. Enabled emissions calculated based on traffic modelling for three key routes only SH1, SH57 and new expressway). Does not include wider network effects. Enabled emissions over these routes increase due to increased VKT, then decline with expected improvements in fleet efficiency. The enabled emissions assessment does not include calculation of avoided emissions from the shared path.

Otaki to North of Levin Enabled Emissions

Road/Shared Path

Road/Shared Path						
				Units	Source	
Do Minimum	Existing SH1/SH57			Units	Source	
Road Length	18			km		
Number of lanes	2					
Lane kilometres	36			km		
Inputs for VEPM						
	-					
Forecast Year	2018	2029	2039	2049		
On and One	74		00		Vehicle Modelling Data worksheet;	A
Speed Car Speed LCV	74	<u>64</u> 64	60 60	55 km/hr 55 km/hr	SH1 & SH57 combined	0
Speed HCV	76	65	61	56 km/hr		
Speed Bus	76	65	61	56 km/hr		
Outputs (new MEDM						\sim
Outputs from VEPM	2018	2029	2039	2049		C
					VEPM6.2 (emissions associated with	NSPORI
CO2 Light	187	177	136	68 g/km	forecast speed)	
	611	627	620	500	VEPM6.2 (emissions associated with	
CO2 Heavy		02.	020	g/km	forecast speed)	
VKT Inputs						
	2018	2029	2039	2049		
	130,107,831	175,650,363	213,192,481	243,770,003	Assumes model ed daily traffic s	
Light vehicle journeys Heavy vehicle journeys	17,569,824	24,198,464	29,550,017	243,770,003 VKT 34,695,868 VKT	consistent 365 days a year Data from O2NL_Modelling Excerpt 230721_v2	
Public Transport	0	0	29,550,017	0 VKT	(003).xlsx See Traffic Data worksheet	
Cycling	0	0	0	0 VKT		
Walking	0	0	0	0 VKT		
Calculated Emissions						
					EV ANSIR	
Annual calculated emissions	2018	2029	2039	2049		
From light vehicle journeys From heavy vehicle journeys	24,322	31,169 15,175	29,041 18,335	16,600 tCO2e 20,467 tCO2e		
From public Transport	0	0	0	0 tCO2e		
From cycling	0	0	0	0 tCO2e		
From walking	0	0	0	0 tCO2e	<i>. b</i> .	
Total	35,053	46,344	47,376	37,066 tCO2e	D	
Cumulative calculated emissions		2029-2038	2039-2048	total	Project completion 2029	
From light vehicle journeys		301,050	228,203	529,253 tCO2e		
From heavy vehicle journeys		167,548	194,009	361,557 tCO2e		
From public Transport From cycling		0	0	etCO2e		
From walking		0	0	0 tCO2e 0 tCO2e		
Total		468,598	422,212	890,811 tCO2e		
Do Minimum Total Enabled Emissions	890,811	2029-2048		tCO2e		
	000,011	2020 2040		10020		
	_		MAN	X ⁻		
Do Intervention Existing Route			. 5			
Road Length	18			km		
Number of lanes	2		N	NIII		
Lane kilometres	36			km		
Inputs for VEPM - Existing Route	Traffic on existing route when	project is in place				
Forecast Year	2018	2029	2039	2049		
Speed Car	2010	63	62	62 km/hr		
Speed LCV		63	62	62 km/hr		
Speed HCV		67	67	67 km/hr		
Speed Bus		67	67	67 km/hr		
Outputs from VEPM Existing Route						$\langle \rangle$
	2018	2029	2039	2049		OTAKI
CO2 Light		178	136	67 g/km	Estimated using VEPM6.2	
CO2 Heavy		622	603	557 g/km		
VKT Existing Route						

VKT Existing Route

2018 0 0 0 c on new highway	2029 64,356,031 6,632,817 0 0 0	2039 78,207,362 7,389,421 0 0 0	2049 94,305,493 9,010,363 0 VKT 0 VKT 0 VKT	Assumes modelled daily traffic is consistent 365 days a year. Data from O2NL_Modelling Excerpt 230721_v2 (003).xlsx. See Traffic Data
0 0 c on new highway	6,632,817 0 0	7,389,421 0 0	9,010,363 VKT 0 VKT 0 VKT	consistent 365 days a year. Data from O2NL_Modelling Excerpt 230721_v2
0 0 c on new highway	0	0	0 VKT 0 VKT	O2NL_Modelling Excerpt 230721_v2
0 0 c on new highway	0	0	0 VKT	
0 c on new highway				
c on new highway		-1	•	worksheet
0,1				
			Luc.	
24			km	
4			km	
120			KIII	
2018	2029	2039	2049	Linked to Summary sheet
-	100	100	100 km/hr	
-	100	100	100 km/hr	
-	100	100	100 km/hr	1
-	100	100	<u>100</u> km/hr	
				Estimated using VEPM6.2
2018	2029	2039	2049	
-			72 g/km	Estimated using VEPM6.2
-	591	574	530 g/km	
2018	2029	2039	2049	
-	119,274,100	146,735,604	171,544,346 VKT	Assumes modelled daily france is
-	18,427,924	23,214,310	28,168,860 VKT	consistent 365 days a year. Data from
-	0	0		O2NL_Modelling Excerpt 230721_v2
-			0 VKT	(003).xlsx_See T affic Da a
-	0	0	0 VKT	worksheet
				worksheet
2018	2029	2039	2049	
-				1 6
-	4,124	4,459	5,022 tCO2e	
-	22,683	21,294	12,335 tCO2e	
-	10,891	13,319	14,916 tCO2e	
-	0	0	0 tCO2e	
-	0	0	0 tCO2e	
-	•	0	0 tCO2e	N N
-	49,141	49,675	38 578 tCO2e	
	2029-2038	2039-2048	the last	ン
-	494,083	441,266	935,349 tCO2e	
		-		
935,349	2029-2048		tCO2e	
	diction Model VEPM6	· · ·		
		2018 2029 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 190 - 591 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 18,427,924 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	2018 2029 2039 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 190 145 - 591 574 - 591 574 - 119,274,100 146,735,604 - 18,427,924 23,214,310 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 10,891 13,319 - 0 0 - 0 0 - 0 0 - 0 0 - <td< td=""><td>2018 2029 2039 2049 - 100 100 100 100 km/hr - 100 100 100 km/hr - 100 100 100 km/hr - 100 145 72 g/km - 591 574 530 g/km - 119,274,100 146,735,604 171,54,346 VKT - 18,427,924 23,214,310 28,168,860 VKT - 0 0 0 0 VKT - 11,444 10,604 6,305 tCO2e - 0 0 0 VKT - 20,883 21,294 12,335 tCO2e - 10,891</td></td<>	2018 2029 2039 2049 - 100 100 100 100 km/hr - 100 100 100 km/hr - 100 100 100 km/hr - 100 145 72 g/km - 591 574 530 g/km - 119,274,100 146,735,604 171,54,346 VKT - 18,427,924 23,214,310 28,168,860 VKT - 0 0 0 0 VKT - 11,444 10,604 6,305 tCO2e - 0 0 0 VKT - 20,883 21,294 12,335 tCO2e - 10,891

Otaki to North of Levin Traffic Modelling Data

Source: Provided to WK via email from Stantec, 23 July 2021. Based on SATURN model for Horowhenua medium growth scenario.

			2018 Base	2029	2029	2039	2039	2049	2049	
			Base (00e_00)	DoMin (00e_M1)	Option (01e_M1)	DoMin (00e_M1)	Option (01e_M1)	DoMin (00e_M1)	Option (01e_M1)	
	Vehicle Type		Daily	Daily	Daily	Daily	Daily	Daily	Daily	
Existing SH Network (SH1 and SH57 Combined)	LV	VKT (km)	356,460	481,234	176,318	584,089	214,267	667,863	258,371	NEPOT
-	LV	Average Speed (km/h)	74	64	63	60	62	55	62	212.
	HV	VKT (km)	48,137	66,297	18,172	80,959	20,245	95,057	24 686	
	HV	Average Speed (km/h)	76	65	67	61	67	56	67	
Expressway	LV	VKT (km)	0	0	326,778	0	402,015		469,985	
	LV	Average Speed (km/h)	0	0	100	0	100	0	100	
	HV	VKT (km)	0	0	50,487		63 601	0	77,175	
	HV	Average Speed (km/h)	0	0	100	0	100	0	100	

100 0 PROMINE REMANA

Otaki to North of Levin

Guideline and Supporting information on methodology for transport modelling

Name of Project	•
Traffic Consultant	
Report (if available)	0
Model Software	\sim
Model	BTRANSP
Model validation	
Time horizons and growth assumptions	
Network assumptions and interdependencies	
Model Scenario Assumptions	
Do Minimum Model Scenario Assumptions	
Do Intervention/With Project	
Induced Traffic	
Interface with Vehicle Emission Prediction Model (Where relevant)	
General assumptions/Limitations	

Traffic Modelling Methodology and Assumptions

Waka Kotahi Guidelines for transport model development Research Report 659 Urban transport modelling in New Zealand – data, practice and resource

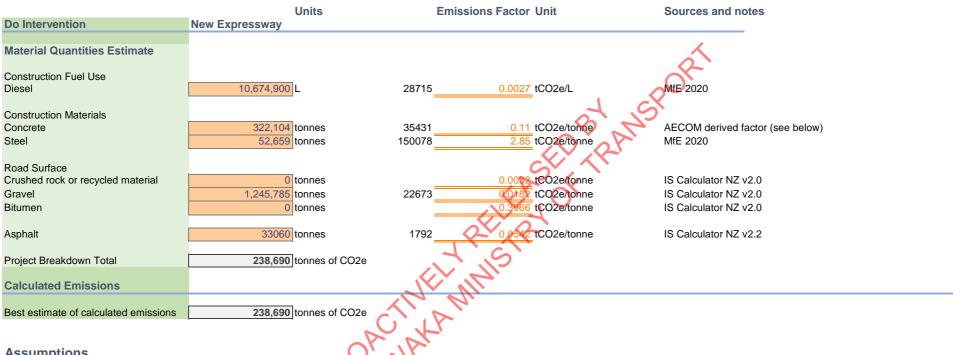
NZUP O2NL	
Quality Transport Planning/Stantec	
Otaki to North of Levin ExpresswayTraffic Model Update v20aOctober2020	2
SATURN https://saturnsoftware2.co.uk/	\sim
The Otaki to North of Levin Traffic Model (O2NLTM) is a traffic model implemented within	
the SATURN software originally developed during 2011 and 2011. The base year of the	
model has been updated from 2011 in v11 to 2018 in v20a, based on the 2018 census data	
for population and employment provided by Statistics New Zealand	
The model covers much of the Horowhenua District, including the major township of Levin	
andextending as far north on SH1 as the Manawatu River (thereby excluding Foxton to the	
north) and extending north on SH57 to just south of Shannon. At the southern extent, the	
model extends beyond HorowhenuaDistrict to the Otaki River, into theneighbouring Kapiti	
CoastDistrict, thereby including the town of Otaki. The model extent was based on capturing	
the effects and benefits of the O2NL Expressway scheme	
The Model Validation Report (MVR) was finalised in 2013 for the original model version.	
Model validation has been undertaken for the update to v20a (see trafffic report).	
DoMin and O2NL, medium growth, for 2018, 2029, 2039 and 2049.	
 The results are based on a 75th %ile growth for medium growth. 	
 While the current SATURN model does not consider induced traffic, we are advised by 	
Stantec that the most significant impact on the VKT and emissions is the land use	
assumptions; the modelling includes testing of three population growth scenarios (low,	
medium, high). The SATURN model includes assumed completion of a number of projects (full details	
s10.6 of report) for the do Min and with intervension 2029/39/49 scenarios. Including those	
within Safety Networks Programme, Taraika Master	
Plan,HDC Speed Limit Review, and HDC Local	
Improvements. The with intervension scenarios also include addiitional network effects as a	
result of O2NL.	
A 'Do Minimum' network with likely / committed schemes as collated and advised by Stantc.	
A 'With Expressway' network that additionally incudes the August 2020 Draft Preferred	
Alignment used as the basis of public consultation, and associated works.	
Planned growth through population has been included, but induced traffic effects still to be	
modelled.	
n/a traffic modelling provided flow/speed data only for SH2/57 and the proposed	
Expressway, which was incorporated into the CIPA spreadsheet and VEPM emissions	
factors entered manually	
Induced traffic effects and wider network effects are not included in the CIPA modelling, but	
will be in future update. The current assessment scenario includes SH2/SH57 do minimum,	
compared with the proposed Expressway.	

Transport model development guidelines (nzta.govt.nz) https://www.nzta.govt.nz/assets/resources/research/reports/65

E MANATU WAY AND STRAND STRAND

FE MANATU WAY AND THE MANS OF THE MANS OF

FE MANATU WAY AND THE MANS OF THE MANS OF



FEMMINIAN MILLING RANGER

Otaki to North of Levin **Construction Emissions**

Expected construction 2025-2029

Road/Shared Path

Assumptions

Emissions for construction have been calculated from data provided by Waka Kotahi for this project. When possible assumptions have been made in a consistent manner to ensure comparability between projects.

Refer to construction schedule worksheet for indicative schedule of quantities of concrete, steel, aggregates, gravels and fuels used during construction. Noting that this is pre-DBC. Based on previous research for Waka Kotahi, only emissions from the largest emission sources from construction of infrastructure projects have been estimated (concrete, steel, aggregates, asphalt, and on-site fuel use).

Materials and works related to bridge abutments have been included where relevant.

Fuel used in the construction is assumed to be 2 litres of diesel for every m3 of earth works (AECOM derived fuel-use ratio).

The following were not included in the estimate: fuel used in quarying activity; emissions from the transportation of construction materials to/from site.

Emission factors are sourced from MfE's 2020 Guide (see link below) where appropriate, or from the ISCA-IS Calculator v2.0.

https://environment.govt.nz/publications/measuring-emissions-detailed-guide-2020/

The ISCA-IS Calculator v2.0 is available for ISCA members at https://www.isca.org.au/Tools-and-Resources

The emission factor for concrete is based on MfE 2020 and ISCA guidance and is based on a standard concrete mix.

Links Links <th< th=""><th>urce: Pr</th><th>ovided by NZUP Project Team, July 2021 (pre DBC</th><th>) (File: O</th><th>2NL Sched</th><th>le of Quantities.xls</th><th>x)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	urce: Pr	ovided by NZUP Project Team, July 2021 (pre DBC) (File: O	2NL Sched	le of Quantities.xls	x)									
Interview Interview <t< th=""><th>-</th><th>Otaki to North of Levin Schedule – f Quantities</th><th></th><th></th><th>Material</th><th></th><th>Material</th><th>Linit Ma</th><th>terial</th><th>Linit Mate</th><th>erial</th><th>Unit</th><th>Material</th><th>Unit</th><th></th></t<>	-	Otaki to North of Levin Schedule – f Quantities			Material		Material	Linit Ma	terial	Linit Mate	erial	Unit	Material	Unit	
	ef El	Descripti n	Unit	Quantity	C ncrete	t rm3	Steel	trm3	Asphalt	t rm3	Aggregates	t rm3	Fuel	l rkg	Assumpti n / N tes
Image: Note of the second of the se															
Image: Second	si	te: installati n, disestablishment and reinstatement f silt													
ether all we determined Image: A	1.1 fe	nces, t rmwater diversi n bunds, sediment ret nti n p nds, eatment systems, temp rary dr p structures, flumes, c nt ur	LS	1											
If the first is calculated in the first is calculated, and is and it is and	dr	ains and her structures required er si n and sediment													
If the first is calculated in the first is calculated, and is and it is and		ADTHINODUS						_							
	E4	ar hw rks ass ciated w rks, site clearance, dem liti n and	15	1											1
In Product state in the first of t	di Te	psoil	LS	-											
10 10 <td< td=""><td>in</td><td>cluding temporary stockni ing of stripped topsoil</td><td>m3</td><td>915200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1830400</td><td></td><td>Far hw rks @ 21 diasal at nar m3 m</td></td<>	in	cluding temporary stockni ing of stripped topsoil	m3	915200									1830400		Far hw rks @ 21 diasal at nar m3 m
I - H - H I - H - H H - H	Fi C														
Intermedial stores Intermedial stores Intermedial stores	.I CI	att fill	m3 m3										6600000	I	Ear hw rks @ 21 diesel at per m3 m
Interpretation Interpretation Interpretation Interpretation	i fr	om commercial sources paterial and grading indicated)													
Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) 20000 Inter A, the AL and Ture AL methods a) a) a) Inter A, the AL and Ture AL methods a) a) a) a) Inter A, the AL and Ture AL methods a) a) a) a) a) Inter A, the AL and Ture AL methods a)	W	aste and surp us	m3	410000											
prime prim prime prime	ſα	vpe A Type R1 and Type R2 materials)	m3	930000									1860000		Farhwrks @ 2ldieselatnerm3m
List of any veeness at listes veeles at any seles of a listes veeles at any seles of a listes veeles at a liste	G	ROUND IMPROVEMENTS											100000		
I subject 200m n mid de y 100 r 1 no A subject 200m n mid de y 100 r			LS	1											/
Link of a 200m number of the Society of a 200 minute of	LID M	situ Suborade Stabilisation a nline, Interchange Ramps, R und b uts - Cement st bilisati n								277	5				W rk n 15kg/sq.m f r h ggrega
control is the mask C Control Definition Definition Control Control Control Definition Control Contro Control Contro <	51	abilising agent and materia)	m2												6mm n m.size)
Drives as called withs, r prig, flux, kerb and hannel, LS 1 Solid drais	2 M	a nine, interchange Ramps, R und b uts - O dinary P rtland ment @ 3% by mass	t	3500	3,500.00	t									
Concernent for nextore and for nextore and for the sectore and	D	RAINAGE rainage													
Subscience Subscience In medianeter twice wall perform and holes and holes and holes and holes and holes in performance in the performance in theperformance in the performance in theperformance in th	de	bris screins fish passage scruff dimes	LS	1											\sim
10 m dameter tank valle perf rat di 100° solo is pipe of mati in level m 5000 10 m dameter tank valle perf rat di 100° solo is data m 5000 Cancing et rat, al solo id data m 100 Cancing et rat, al solo id data m 100 Cancing et rat, al solo id data m 100 Cancing et rat, al solo id data m 100 Concrete pipe colverts and somma solome huk and tank m 5000 Concrete pipe colverts and somma solome huk and tank m 100 DN 500 Colvert, and solo id solo m 100 DN 500 Colvert, and solo if solo id solo m 100 DN 500 Colvert, and solo if solo id solo in solo id solo id solo in solo id sol	1 St	ibsoil drains											1	0	\mathbf{X}
Streep (Case) Bup 1. Under Mark Intervel (mait in Rev1	11	0 mm diameter twin wall perf rat d HDPE subs il pipe		50000									4	$\cdot \mathbf{C}$	tic immaterial exclud d based r pre i us research f r Waka K tahi.
Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	St	reng h Class B up t 1.0m bel w f rmati n level f rmati n level		50000										\ •	
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	le	el	N	1000								\mathbf{X}			Plastic immaterial exclud d based in ore i us research f r Waka K tabi
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	1 0	utlets to subsoil drains utlets t subs il drains, 300mm x 300mm x 100mm hick	N	500	11.25	t).711 t							
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	C	ulverts									\sim)				
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	l pi	pes including excavation in a I materials, shoring appropriate to								- ($/\Sigma$				
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	.1 D	N 450 RCRRI C ass 4 c increte pipe	m		458.25	:				C		\sim			1.54
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	.3 D	N 1000 Culvert n rete pipe	m	100	20.00	t				\sim	1 J				10%
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	R	ectangular concrete culverts including excavation in all							7	\sim					
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the			m	50	481.00				/.X		\sim				C perceto is 6 18 percenta vo. is 0.078
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	2.2 r 2.3 Pr	e a t b x ul ert 1 50m wide x 1 20m high ecast b x culvert 1.50m w de x 1.30m h gh	m	50 50	585.00 594.75	t	4	57.30 t 14.58 t	\mathbf{X}						c increate is 0.11 per iniz, re is 0.970
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	.4 Pr	ecast b x culvert 1.75m wide x 1.20m high e a t b x ul ert 1.90m wide x 1.50m high	m	50	869.25	t t	13	01.85 t 18.23 t							
Handwalk and hier and Coulds Structures Image: Count of the and the and the and the infected in the and the and the infected in the and the	2.7 r 2.8 Pr	e a t b x ul ert 2 10m wide x 1 50m high ecast b x culvert 2 05m w de x 2 00m b gb	m	150	2.882.25	t	4	i8.33	\mathbf{V}	-					
Precase concrete headwals, wingwalls including bedding and hourd II. N 250 Enciden control and scour portection at headwalls and other inter and outler inclustor.et inclustors and funces. N Types native: indicated! 1 Bio ara price in disc) = 450mm? 1 Conclustor and tech indicated! 10000 Encidence 10000 Encidence 10000	.9 Pr .10 r	ecast b x culvert 2.80m wide x 2.50m high e a t b x ul ert 2 70m wide x 3 00m high				t t	3	19.50 t 12.2 t							
Instrume Image: Second Secon		eadwalls and inlet and Outlet Structures													
Inlet and outlet structures to culvets and flumes Inten and outlet structures to culvets and flumes Inten and obe indirated Inten and obe indirated Inten and the indirated Intended In	hi	vekf II	N	250	207.00	t	1								D1.7-Hynds-Wingwa ls.pdf
Internet disk indicated1 I Catch Pix Costent: and Manholes 1000 Catch Pix Costent: and Manholes 1000	7 Er	osion control and scour protection at headwalls and other let and outlet structures to culverts and flumes					-	(
Catch Pax Cessoits and Manholes Catch Pax Cessoits and Manholes Manho es & Sumps	(†	vne and size indicated)		10000					9	100	0	,			Assum d.t. be crushed r. ck
Image: Additional state broching, for a state broching, f			,								-	-			
Implementation Imple	2 in	anho es & Sumps cluding excavation, backfill, base, benching, riser sections and						\sim							
i Image: rest in and c wr I. Event dip hu texceeding 15.m i 100 05.00 1 6.25 1 Control in the second with the second withe second with the second with the second wit	- Pr	ecast c ncrete 1200 mm diameter wi h Class D 210 kN cast		100	190.60	t V		i9. t							https://www.hynds.co.nz/wp-
	-2 ir	n frame and c ver t invert dep h n t exceeding 1.5 m	N	100											System odf
Calerios Produce of	.5 St	anda d precast c ncrete sumps,	N	250	05.00	t		9.25 t							Guide/08a41cfab1/Humes-Stormwa
PROMAK. PROMAK.	_					2.									Collection-Products odf
PRONNA PRONNA FEMANA					1										
PROMAN PROMAN AMANATUNA FEMANATUNA															
PROME HANATUNE FEMANATUNE				X											
FE MANATU W.			() `	VX.	·									
FE MANATU X				/ 、	N										
FE MANATO -															
FE-MANATU				$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $											
TE MANA		X	1	\searrow											
TE MANA.		•													
TE MANK		· · · · · · · · · · · · · · · · · · ·													
TE MAN			\sim												
TE MAI		\sim													
TENK		2													
KE MI															
		\sim													

	PAVEMENT AND SURFACING Subbase - Granular								
5.1.3 5.1.3.1	Granular Subbase from commercial sources Mainline - AP65 subbase 250mm r 400mm hick bas d n		250000				450000	t	Assuming density of aggregate of 1800kg/m3 (CLAECOM)
	pavement design Interchange Ramps, R undab uts - AP65 subbase 250mm r	m3					37800	t	Assuming density of aggregate of
5.1.3.2	400mm hick based in pavement design	m3	21000				57600	t	1800kg/m3 (CI AECOM) Assuming density of aggregate of
5.1.3.3 5.2	L cal r ads - AP65 subbase 250mm hick Basecourse - Granular	m3	32000						1800kg/m3 (CI AECOM)
5.2.1	Basecourse - Granular Granular Basecourse from commercial sources						31 5000		Assuming density of aggregate of
5.2.1.1	Mainline - FBS40 (Wirtgen Grading Envel pe) basec urse 250mm hick	m3	175000					L.	1800kg/m3 (CI AECOM). Assume gravel.
5.2.1.2	Interchange Ramps - FBS40 (Wirtgen Gr ding Envel pe) basec urse 250mm hick	m3	6000				10800	t	Assuming density of aggregate of 1800kg/m3 (CI AECOM). Assume gravel.
5.2.1.3	L calr ads - M/4 AP40 basec urse 160mm hick	m3	19000				34200	t	Assuming density of aggregate of 1800kg/m3 (CI AECOM). Assume gravel.
5.2.1.4	Mainline, Interchange Ramps - F amed bitumen stabilisati n 250mm n minal dep h (excluding s pply f stabilising gent and	m2	720000				324000	t	Assuming density of aggregate of 1800kg/m3 (CI AECOM). Assume gravel.
5.2.1.5	material) Mainline, Interchange Ramps - FBS Ordinary P rtland cem nt @ 1% by ma	t	4500	4,500.00 t					
5.2.1.6	Ma nline. Interchanoe Ramos - FBS Bitumen @ 3% bv mass Basecourse - Structural Asphalt	1	13000			390 +	12610	,	https://www.hgleach.co.nz/wp- content/uploads/2019/05/Matatoki-Quarry-
5.3.1	Basecourse - Structural Asphalt R und b uts - Grade 4 Emulsi n Seal	m2	23000			345 1			Price-List-2019 ndf
5.3.1.2 5.3.1.3	R und b ut - Grade 4 Emulsi n Seal R und b ut - AC14HFL wer ba e ur e 60mm hi k R und b uts - AC20 Upper basec urse 200mm hick	m2 m3 m3	1500 4750			2 250.00 t 7 125.00 t			https://www.hgleach.co.nz/w
5.4	Surfacing								content/uploads/2019/05/Matat_ki-Quarry- Price-List-2019.ndf
5.4.5.1 5.4.5.3 5.4.5.5	First coat seal Manine - G2/4 Tw c at choseal Interchance Ramos - G2/4 Tw c at chioseal L alr ad - G3/5 Tw at hip eal	m2 m2	670000 23000 110000			10.050.00 t 345.00 t 1.650.00 t			
	L air ad - G3/5 Tw at hin eal L caiR ads - Sec nd c at seal Asohatik concrete surfacino Manline - 60 mm hick EMOGPAII n tack c at	m2 m2 m2	11000			1.650.00 t 165.00 t 10.050.00 t			\sim
5.4.8.10 5.4.8.10 5.6	Interchange Ramps - 60 mm hick EMOCPA11 n tack c at R und b ut - 60 mm hik SMA11 n ta k at Concrete	m2 m2 m2	670000 23000 23000			345.00 t 345.00 t			
5.6.1 5.6.1.1 5.7	Concrete Footnath C ncrete shared use pa h - 4m w de, 20MPa br m finish, 150mm hirk	m2	68000	25,500.00 t	5,801.76 t				CX
	Roundabouts Roundabout Construct on R und b ut C nstructi n	m2	12120	10.605.00 +	103408 1			2	350mm hick
D6 6.1	RRIDGES / STRUCTURES EXPRESSWAY BRIDGES			1.782.00 t	250.27 t			O	All w 2500kg/m3 f r c ncrete and 5% by
6.1.1	NIMTR Bridge	m2	1320						v lume f teel weight 7,900kg/m3 (450mm hick deck) All w 20% fact r
	EO f r butments	LS	1	2,673.00 t	375.41 t			247	
6.1.3	Ohau Ri er Bridge EO f r butments Kuku Stream Bridge	m2 LS m2	4950 1 627	6.682.50 t 10.023.75 t 846.45 t	938.52 t 1 407.78 t 118.88 t	<u> </u>			
6.1.6	EO f r butment Kuku Fast R d Rr doe EO f r butment	LS m2 LS m2	1056 1 3729	1269.68 t 1425.60 t 2138.40 t 5.034.15 t	178.32 t 200.22 r 300.33 r 707.02 t	. >			
6.1.10	Wa kawa Stream Bridge EO f r butments Waiauti Stream Bridge N r h FO f r butments	LS m2 15	1 1056	755123 t 1425.60 t 2138.40 t	106053 r 200.22 t 30033 r		\sim		
	Waiauti Stream Bridoe Suh EO fr butments EX SH1 Cr ssinon ear Tairs P2O Culvert Ni Ext n i n (Greinwid Stream)	m2 LS m2	1 627 1 2604	846.45 t 1.269.68 t 3.515.40 t	118 88 r 178.32 t 493 77 r				
0.2	Dueen Street Ove bi dae	m2 m2	740	239.76 t 999.00 r 1.498.50 t	33.67 t 140.30 210.46 t	-	4		
6.2.3	EQ.f.r. butments Tararua Interchange Br dge (Grade Separated Diam nd wi h RABs) EQ.f.r. butments	m2 LS	962	1,298.70 t 1,298.70 t	270.46 T 182.4 T 273.59 T	S	•		
6.2.5 6.2.6 6.2.7	EO F Duttment EO F ruttment EO	m2 LS m2 LS	629 1 629	84915 r 1273.73 t 849.15 t 1273.73 r	11.6 t 178.9 t 119.26 t	$\langle \rangle$			
	EO f r butment H ni Ta pua small br doe FO f r butments PROPERTY ACCESS STRUCUTRES	LS m2 15	1 629 1	1 273 73 t 849.15 t 1 273 73 t	178 89 r 119.26 t 178 89 r				
6.3.1 6.3.2	RVDTRFT ACCESS STROLOTRES RP11080 - Sm x Sm B x Culvert RP27530 - 3m x 3m B x Culvert RP27530 - 3m x 3m B x Culvert	m2 m2 m2	250 150 150	38125.00 t 8235.00 t 8235.00	6.062.50 t 1.309.50 t 1.309.50 t				C ncrete is 6.1t per m2, re is 0 97t per m2
6.3.4	8P27530 - 3m x 3m R x Culvert RP27530 - 3m x 3m R x Culvert RP11080 - 5m x 5m B x Culvert RP27530 - 3m x 3m B x Culvert	m2 m2	180 150	9 882 00 1 8 235 00 1 38 125 00 1	1 571 T 1 309 S T 6.0 50 T				
		m2 m2 m2 m2	250 150 150 150 195	8235 0 1	1.309.50 t 1.309.50 t 0.50 t				
6.3.11 6.3.12 6.3.13	RP2/530 - 3m x 3m B x Culvert RP2/530 - 3m x 3m B x Culvert RP2/530 - 3m x 3m B x Culvert RP11080 - 5m x 5m B x Culvert	m2 m2 m2	195 150 150 250	10 705 235.00 t 80 5 00 t	1 02 16 F 1 309.50 t 1 3 9 50 F 6.062.50 t				
D7 7.1	RETAINING WALLS Excavation and backfiling								
7.1.1.3 7.1.1.4	1 Sm hioh o le and rail retainino tru ture 7.0m h oh Se ant wall at Tararua	m2 m2	750					22500 70000	I Farhwrks @ 21 diesel at nerm3mr ved I Earhwrks @ 21 diesel at nerm3mr ved
8.0 8.0	IRAFIC SERVICES Road Safety Barrier Systems Road Safety Barrier Systems								
8.0.1	transiti ns. or und beam requirements)	LS		NY					
		2		7.					
	\circ		\sim	•					
		~	\sim						
		Y							
	~								
	BOYTALS - In a Jun & Chaker BOYTALS - In a Jun & Chaker Extended And A Jun Common Section - In a Section -								

8.1.6		1	
8.1.0	Rigid roadside and median safety barriers		
8.1.6.4	F- hape barrier 1070 mm high (NZTA M23 c mpliant) NCHRP350 TL5	m	1300
8.1.9	Flexible safety barrier systems		
8.1.9.1	Wirer pe barrier system (NZTA M23 c mpliant) MASH TL3	m	90000
8.1.9.2	Wire r pe safety barrier terminal (NZTA M 3 mpliant) MASH TL3	N	100
8.1.9.3	Wire r pe safety barrier interm diate anch r (NZTA M23 c mpliant) MASH TI 3	N	50
8.2	Pavement Markings and Delineation		
8.2.1	Pavement Markings and Del neation installation		
8.2.1.1	a em nt Marking and Delineati n in tallati n	15	1

1,189.50 t 1,674.00 t 3.35 t 1.67 t

FEMMINAN MILLINGER OF TRANSPORT

8.3	Road Signs		
	Road S ons Insta lation		
8.3.1.1	R ad signs installati in	15	1
8.5	Lighting		
8.5	Lighting Installation		
8511	Lighting In tallati n at inter hange	N	100
8.5.1.2	L oht ng Installati n at intersecti ns	N	80

REMANNING THE MANNER OF TRANSPORT

D9 SERVICE RELOCATIONS 9.1 Services Relenzation 9.1.1 Ser i e Rel ati n	LS				
D10 LANDSCAPING AND URBAN DESIGN 10.0 Landscaping 10.0 Landscaping	21				
10.0.1 Landschind ass stated wirks 10.1 Topsoil 10.1.1 Topsoil					
10.1.1.4 SI pes steeper han 1:2 100 mm thick, Mix 6	m2 6	000		132000	I Assume separate t previ us ear hw rks. Far hw rks @ 21 diesel at ner m3 m ved
101.2 Topsoil using material from commercial sources 10.1.2.1 100 mm hick t grass d ve ges	m2 5	000		100000	Assume separate t previ us ear hw rks.
10.1.2.3 00 mm hick t planted areas (fil batters and amenity planting), Mix 4. Mix 2		000		60000	Farhwirks @i 21 diesel at nerm3 mi ved I
10.5 Eences. Gates. and Handrails 10 S.1 Temporary & permanent fences		-			
10.5.1.1 Seven wire and timber p st fence	m 5	000			Assume timber material, likely t be immaterial based n previ us research
10.5.1.2 Amenity fencing	m 1	000			hasen f r Waka K tahi Assume timber material, likely t be immaterial based n previ us rasearch
10.5.1.3 SUP fencing	m 3	940			hased f r Waka K tabi Assume timber material, likely t be immaterial based n previ us research
10.5.1.4 N ise att nuati n fencing	m 1	000			ha ed f r Waka K tahi Assume timber material, likely t be immaterial based n previ us research
D11 TRAFFIC MANAGEMENT					based f. r. Waka K. tahi
11.1 Traffic Management 11.1.1 Temporary traff c management plan preparation 11.1.1 Preparati n f site pecific temp rary traffic management plan	LS				
11 1.2 Temporary traff c management - imp ementation, management and maintenance					Exclude as perati nal emissi ns n t
11.1.2.1 Maintenance f temp rary traffic management D12 PRELIMINARIES AND CENERAL	mnh	0			e nsider d'at his stane. Fassesment
12.1 Preliminary and General					\sim
12 1.1 Preliminary and General	LS				
					\sim
D13 EXTRAORDINARY CONSTRUCTION COSTS 13.1 Unscheduled Items					\sim
SUB TOTAL 'A" (ex. lu. ivef.GST) T. tals		<u> </u>		1	
Pr CE-MAN			AFT RA	2	